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Abstract. In this paper, we investigate some properties of generalized
Fibonacci quaternions and Fibonacci-Narayana quaternions in a gener-
alized quaternion algebra.
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0. Introduction

The Fibonacci numbers was introduced by Leonardo of Pisa (1170-1240) in
his book Liber abbaci, book published in 1202 AD (see [9], p. 1, 3). These
numbers were used as a model for investigate the growth of rabbit populations
(see [4]). The Latin name of Leonardo was Leonardus Pisanus, also called
Leonardus filius Bonaccii, shortly Fibonacci. This name is attached to the
following sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . ,

with the nth term given by the formula:

fn = fn−1 + fn−2, n ≥ 2,

where f0 = 0, f1 = 1.
Fibonacci numbers was known in India before Leonardo’s time and used

by the Indian authorities on metrical sciences (see [10], p. 230). These num-
bers have many properties which were studied by many authors (see [6], [2],
[10], [9]).

Narayana was an outstanding Indian mathematician of the XIV century.
From him came to us the manuscript “Bidzhahanity” (incomplete), written
in the middle of the XIV century. For Narayana was interesting summation
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of arithmetic series and magic squares. In the middle of the XIV century he
proved a more general summation. Using the following sums

1 + 2 + 3 + . . . + n = S(1)
n ,

S
(1)
1 + S

(1)
2 + . . . + S(1)

n = S(2)
n ,

S
(2)
1 + S

(2)
2 + . . . + S(2)

n = S(2)
n , . . . ,

Narayana calculated that

S(m)
n =

n(n + 1)(n + 2) . . . (n + m)
1 · 2 · 3 · . . . · (m + 1)

. (*)

Narayana applied its rules to the problem of a herd of cows and heifers
(see [16], [12], [13], [1]).

Narayana problem ([1]). A cow annually brings heifers. Every heifer, begin-
ning from the fourth year of his life also brings heifer. How many cows and
calves will be after 20 years?

Narayana’s calculation is in the following:

1) a cow within 20 years brings 20 heifers of the first generation;
2) the first heifer of the first generation brings 17 heifers second generation,

the second heifer of the first generation brings 16 heifers second genera-
tion etc. The total in the second generation will be 17+16+. . .+1 = S

(1)
17

cows and calves;
3) the first heifer of the seventeen heifers of the second generation brings 14

heifers of the third generation, the second heifer of the seventeen heifers
of the second generation brings 13 heifers of third generation, etc. The
total heifers of the first generation brings 13+12+ . . .+1 = S

(1)
13 heads.

Now, all heifers of the second generation brings S(1)
14 +S

(1)
13 + . . .+S

(1)
1 =

S
(2)
14 heads in the third generation.

Similarly, Narayana calculated total number in the herd after 20 years:

n = 1 + 20 + S
(1)
17 + S

(2)
14 + . . . + S

(6)
2 .

Using formula (*), he obtained:

n = 1 + 20 +
17 · 18
1 · 2 +

14 · 15 · 16
1 · 2 · 3 +

2 · 3 · 4 · 5 · 6 · 7 · 8
1 · 2 · 3 · 4 · 5 · 6 · 7 = 2745.

This problem can be solved in the same way that Fibonacci solved its
problem about rabbits (see [8], [9], [12], [13]).

In the beginning of the first year were 1 cow and 1 heifer which born. We
have now 2 heads. In the beginning of the second year and in the beginning of
the third year the number of heads increased by one. Therefore the number
of heads are 3 and 4, respectively. From the fourth year, the number of heads
in the herd is defined by recurrence formulae:

x4 = x3 + x1, x5 = x4 + x2, . . . , xn = xn−1 + xn−3,

Author's personal copy
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since the number of cows for any year is equal with the number of cows of
the previous year plus the number of heifers which was born (= number of
heads that were three years ago) (see [1]).

We have the sequence

2, 3, 4, 6, 9, . . . , un+1 = un + un−2.

Computing, we obtain that u20 = 2745 (see [8], [9], [12], [13], [1]).
Now, we can consider the sequence

1, 1, 1, 2, 3, 4, 6, 9, . . . , un+1 = un + un−2,

with n ≥ 2, u0 = 0, u1 = 1, u2 = 1. These numbers are called the Fibonacci-
Narayana numbers (see [3]).

In the same paper [Di, St; 03], authors proved some basic properties of
Fibonacci-Narayana numbers, namely:

1) u1 + u2 + . . . + un = un+3 − 1.
2) u1 + u4 + u7 + . . . + u3n−2 = u3n−1.
3) u2 + u5 + u8 + . . . + u3n−1 = u3n.
4) u3 + u6 + u9 + . . . + u3n = u3n+1 − 1.
5) un+m = un−1um+2 + un−2um + un−3um+1.
6) u2n = u2

n+1 + u2
n−1 − u2

n−2.
7) If in the sequences {un}, n = 7k + 4, n = 7k + 6, n = 7k, when k =

0, 1, 2, . . ., then un is even.
8) If in the sequences {un} n = 8k, n = 8k − 1, n = 8k − 3, when

k = 0, 1, 2, . . ., then 3 | un.

Another property of Fibonacci-Narayana numbers was proved in [14].
For all natural n ≥ 2, we have

un =
[n/3]∑
m=0

�m[n/3]un−[n/3]−2m,

where [a] is an integer part of a and �kn = n!
k!(n−k)! , k! = 1 · 2 · 3 · . . . · k, k ∈ N.

Let H (β1, β2) be the generalized real quaternion algebra, the algebra
of the elements of the form a = a1 · 1 + a2e2 + a3e3 + a4e4, where ai ∈
R, i ∈ {1, 2, 3, 4}, and the basis elements {1, e2, e3, e4} satisfy the following
multiplication table:

· 1 e2 e3 e4
1 1 e2 e3 e4
e2 e2 −β1 e4 −β1e3
e3 e3 −e4 −β2 β2e2
e4 e4 β1e3 −β2e2 −β1β2

We denote by t (a) and n (a) the trace and the norm of a real quaternion
a. The norm of a generalized quaternion has the following expression n (a) =
a21 + β1a

2
2 + β2a

2
3 + β1β2a

2
4. For β1 = β2 = 1, we obtain the real division

algebra H.
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1. Preliminaries

In the present days, several mathematicians studied properties of the Fi-
bonacci sequence. In [6], the author generalized Fibonacci numbers and gave
many properties of them:

hn = hn−1 + hn−2, n ≥ 2,

where h0 = p, h1 = q, with p, q being arbitrary integers. In the same pa-
per [6], relation (7), the following relation between Fibonacci numbers and
generalized Fibonacci numbers was obtained:

hn+1 = pfn + qfn+1. (1.1)

The same author, in [7], defined and studied Fibonacci quaternions and gen-
eralized Fibonacci quaternions in the real division quaternion algebra and
found a lot of properties of them. For the generalized real quaternion al-
gebra, the Fibonacci quaternions and generalized Fibonacci quaternions are
defined in the same way:

Fn = fn · 1 + fn+1e2 + fn+2e3 + fn+3e4,

for the nth Fibonacci quaternions, and

Hn = hn · 1 + hn+1e2 + hn+2e3 + hn+3e4,

for the nth generalized Fibonacci quaternions.
In the same paper, we find the norm formula for the nth Fibonacci

quaternions:

n (Fn) = FnFn = 3f2n+3, (1.2)

where Fn = fn · 1 − fn+1e2 − fn+2e3 − fn+3e4 is the conjugate of the Fn in
the algebra H. After that, many authors studied Fibonacci and generalized
Fibonacci quaternions in the real division quaternion algebra giving more
and surprising new properties (for example, see [15], [11] and [5]).

M. N. S. Swamy, in [15], formula (17), obtained the norm formula for
the nth generalized Fibonacci quaternions:

n (Hn) = HnHn

= 3(2pq − p2)f2n+2 + (p2 + q2)f2n+3,

where Hn = hn · 1− hn+1e2 − hn+2e3 − hn+3e4 is the conjugate of the Hn in
the algebra H.

Similar to A. F. Horadam, we define the Fibonacci-Narayana quater-
nions as

Un = un · 1 + un+1e2 + un+2e3 + un+3e4,

where un are the nth Fibonacci-Narayana number.
In this paper, we give some properties of generalized Fibonacci quater-

nions and Fibonacci-Narayana quaternions.

Author's personal copy
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2. Generalized Fibonacci Quaternions

As in the case of Fibonacci numbers, numerous results between Fibonacci
generalized numbers can be deduced. In the following, we will study some
properties of the generalized Fibonacci quaternions in the generalized real
quaternion algebra H (β1, β2). Let Fn = fn · 1 + fn+1e2 + fn+2e3 + fn+3e4 be
the nth Fibonacci quaternion and Hn = hn ·1+hn+1e2 +hn+2e3 +hn+3e4 be
the nth generalized Fibonacci quaternion. A first question which can arise is
what algebraic structure have these elements? The answer will be found in
the below theorem, denoting first a nth generalized Fibonacci number and a
nth generalized Fibonacci element with hp,q

n , respectively Hp,q
n . In this way,

we emphasis the starting integers p and q.

Theorem 2.1. The set Hn = {Hp,q
n / p, q ∈ Z} ∪ {0} is a Z-module.

Proof. Indeed, aHp,q
n + bHp′,q′

n = Hap+bp′,aq+bq′
n ∈ Hn, where a, b, p, q, p′, q′ ∈

Z. �

Theorem 2.2. i) For the Fibonacci quaternion elements, we have
n∑

m=1

(−1)m+1
Fm = (−1)n+1

Fn−1 + 1 + e3 + e4. (2.1)

ii) For the generalized Fibonacci quaternion elements, the following relation
is true,
n∑

m=1

(−1)m+1
Hp,q

m = (−1)n+1
Hp,q

n−1 − p+q+pe2+qe3+pe4+qe4. (2.2)

Proof. i) From [2], we know that
n∑

m=1

(−1)m+1
fm = (−1)n+1

fn−1 + 1. (2.3)

It results:
n∑

m=1

(−1)m+1
Fm

=
n∑

m=1

(−1)m+1
fm + e2

n∑
m=1

(−1)m+1
fm+1

+ e3

n∑
m=1

(−1)m+1
fm+2 + e4

n∑
m=1

(−1)m+1
fm+3

= (−1)n+1fn−1 + 1 − e2[(−1)n+1fn−1 + (−1)n+2
fn+1]

+ e3

[
(−1)n+1

fn−1 + 1 + (−1)n fn+1 + (−1)n+1
fn+2

]

− e4[(−1)n+1
fn−1 − 1 + (−1)n+2

fn+1 + (−1)n+3
fn+2 + (−1)n+4

fn+3]

= (−1)n+1fn−1 + 1 + (−1)n+1
e2fn + e3 (−1)n+1

[
fn+1 + (−1)n+1

]
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− e4 (−1)n+1
[
−fn+2 − (−1)n+1

]

= (−1)n+1 (fn−1 + fne2 + fn+1e3 + fn+2e4) + 1 + e3 + e4

= (−1)n+1
Fn−1 + 1 + e3 + e4.

ii) Using relations (1.1) and (2.3) ,we have

n∑
m=1

(−1)m+1
Hp,q

m

=
n∑

m=1

(−1)m+1
hp,q
m + e2

n∑
m=1

(−1)m+1
hp,q
m+1

+ e3

n∑
m=1

(−1)m+1
hp,q
m+2 + e4

n∑
m=1

(−1)m+1
hp,q
m+3

=
n∑

m=1

(−1)m+1
pfm−1 +

n∑
m=1

(−1)m+1
qfm

+ e2

n∑
m=1

(−1)m+1
pfm + e2

n∑
m=1

(−1)m+1
qfm+1

+ e3

n∑
m=1

(−1)m+1
pfm+1 + e3

n∑
m=1

(−1)m+1
qfm+2

+ e4

n∑
m=1

(−1)m+1
pfm+2 + e4

n∑
m=1

(−1)m+1
qfm+3

= p (−1)n+1
fn−2 − p + q (−1)n+1

fn−1 + q

+ e2p (−1)n+1
fn−1 + pe2 + e2q

[
(−1)n+1

fn+1 − (−1)n+1
fn−1

]

+ e3p
[
(−1)n+1

fn+1 − (−1)n+1
fn−1

]

+ e3q
[
(−1)n+1

fn−1 + 1 + (−1)n fn+1 + (−1)n+1
fn+2

]

+ e4p
[
(−1)n+1

fn−1 + 1 + (−1)n fn+1 + (−1)n+1
fn+2

]

− e4q[(−1)n+1
fn−1 − 1 + (−1)n+2

fn+1 + (−1)n+3
fn+2 + (−1)n+4

fn+3]

= p (−1)n+1
fn−2 − p + q (−1)n+1

fn−1 + q

+ e2p (−1)n+1
fn−1 + pe2 + e2q (−1)n+1

fn + e3p (−1)n+1
fn

+ e3q (−1)n+1 [fn−1 + (−1)n+1 − fn+1 + fn+2]

+ e4p (−1)n+1
[
fn−1 + (−1)n+1 − fn+1 + fn+2

]

− e4q (−1)n+1
[
fn−1 − (−1)n+1 − fn+1 + fn+2 − fn+3

]

= p (−1)n+1
fn−2 − p + q (−1)n+1

fn−1 + q
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+ e2p (−1)n+1
fn−1 + pe2 + e2q (−1)n+1

fn + e3p (−1)n+1
fn

+ e3q (−1)n+1
[
fn+1 + (−1)n+1

]
+ e4p (−1)n+1 [(−1)n+1 + fn+1]

− e4q (−1)n+1
[
−fn+2 − (−1)n+1

]

= (−1)n+1
Hp,q

n−1 − p + q + pe2 + qe3 + pe4 + qe4. �

From the above Theorem, we can remark that all identities valid for
the Fibonacci quaternions can be easy adapted in an approximative similar
expression for the generalized Fibonacci quaternions, if we use relation (1.1) ,
a true relation in the both algebras H (β1, β2) and H.

Proposition 2.3. If hn+1 = pfn + qfn+1 = 0, then we have:

H2
n+1 = 3

q2

f2
n

[
f2
2n+1 − fn+1fn−2f2n+2

]
, (2.4)

where H2
n+1 ∈ H (β1, β2) .

Proof. Since hn+1 = 0, it results that t (Hn+1) = hn+1 = 0, therefore
n (Hn+1) = H2

n+1. From hn = pfn + qfn+1 = 0, we have p = − qfn+1

fn
and

we obtain:

p2 + 2pq =
q2f2

n+1

f2
n

− 2q2
fn+1

fn
= −q2fn+1fn−2

f2
n

and

p2 + q2 =
q2f2

n+1

f2
n

+ q2=q2
f2
n+1 + f2

n

f2
n

= q2
f2n+1

f2
n

,

since f2
n+1 + f2

n = f2n+1.

It results

n (Hn+1) = 3[(p2 + 2pq)f2n+2 + (p2 + q2)f2n+1]

= 3
q2

f2
n

[−fn+1fn−2f2n+2 + f2
2n+1]. �

In the following, we will compute the norm of a Fibonacci quaternion
and of a generalized Fibonacci quaternion in the algebra H (β1, β2) .

Let Fn = fn ·1+fn+1e2 +fn+2e3 +fn+3e4 be the nth Fibonacci quater-
nion, then its norm is

n (Fn) = f2
n + β1f

2
n+1 + β2f

2
n+2 + β1β2f

2
n+3.

Using recurrence of Fibonacci numbers and relations

f2
n + f2

n−1 = f2n−1, n ∈ N, (2.5)

f2n = f2
n + 2fnfn−1, n ∈ N, (2.6)
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from [2], we have

n (Fn) = f2
n + β1f

2
n+1 + β2f

2
n+2 + β1β2f

2
n+3

= f2
n + β1f

2
n+1 + β2

(
f2
n+2 + β1f

2
n+3

)
= f2n+1 + (β1 − 1) f2

n+1 + β2

(
f2n+5 + (β1 − 1)f2

n+3

)
= f2n+1 + β2f2n+5 + (β1 − 1)

(
f2
n+1 + β2f

2
n+3

)
= (1 + 2β2) f2n+1 + 3β2f2n+2 + (β1 − 1)

(
f2
n+1 + β2f

2
n+3

)
= h1+2β2,3β2

2n+2 + (β1 − 1)
(
f2
n+1 + β2f

2
n+3

)
= h1+2β2,3β2

2n+2 + (β1 − 1) (f2n+2 − 2fnfn+1 + β2f2n+6 − 2β2fn+2fn+3)

= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + β2f2n+6 − 2 (fnfn+1 + β2fn+2fn+3)]

= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + β2f2n+6

− 2
(
fnfn+1+β2f

2
n+2+β2fn+1fn+2

)
]

= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + β2f2n+6

− 2
(
fnfn+1+β2f

2
n+2+βf2

n+1+β2fnfn+1

)
= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + β2f2n+6 − 2 (1 + β2) fnfn+1 − 2β2f2n+3]

= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + β2f2n+4 + β2f2n+3 + β2f2n+4 − 2β2f2n+3

− 2 (1+β2) fnfn+1]

= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + 2β2f2n+4 − β2f2n+3 − 2 (1+β2) fnfn+1]

= h1+2β2,3β2

2n+2 + (β1 − 1)[f2n+2 + 2β2f2n+2 + 2β2f2n+3 − β2f2n+3

− 2 (1+β2) fnfn+1]

= h1+2β2,3β2

2n+2 + (β1 − 1)[(1 + 2β2) f2n+2 + β2f2n+3 − 2 (1+β2) fnfn+1]

= h1+2β2,3β2

2n+2 + (β1 − 1)[h1+2β2,β2

2n+3 − 2 (1+β2) fnfn+1]

= h1+2β2,3β2

2n+2 + (β1 − 1)h1+2β2,β2

2n+3 − 2(β1 − 1) (1+β2) fnfn+1.

We just proved

Theorem 2.4. The norm of the nth Fibonacci quaternion Fn in a generalized
quaternion algebra is

n (Fn)=h1+2β2,3β2

2n+2 +(β1-1)h1+2β2,β2

2n+3 -2(β1-1) (1+β2) fnfn+1. (2.7)

Using formula (2.7) and relation (1.1) when β1 = β2 = 1, we obtain
formula (1.2).

Using the above theorem and relations (2.5) and (2.6) , we can compute
the norm of a generalized Fibonacci quaternion in a generalized quaternion
algebra. Let Hn = hn · 1 + hn+1e2 + hn+2e3 + hn+3e4 be the nth generalized
Fibonacci quaternion. The norm is

Author's personal copy
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n (Hp,q
n ) = h2

n + β1h
2
n+1 + β2h

2
n+2 + β1β2h

2
n+3

= (pfn−1+qfn)2 + β1 (pfn+qfn+1)
2 + β2 (pfn+1+qfn+2)

2

+ β1β2 (pfn+2+qfn+3)
2

= p2
(
f2
n−1 + β1f

2
n + β2f

2
n+1 + β1β2f

2
n+2

)
+ q2

(
f2
n + β1f

2
n+1 + β2f

2
n+2 + β1β2f

2
n+3

)
+ 2pq (fn−1fn + β1fnfn+1 + β2fn+1fn+2 + β1β2fn+3fn+2)

= p2h1+2β2,3β2

2n + p2(β1 − 1)h1+2β2,β2

2n+1 − 2p2(β1 − 1) (1+β2) fn−1fn

+ q2h1+2β2,3β2

2n+2 + q2(β1 − 1)h1+2β2,β2

2n+3 − 2q2(β1 − 1) (1+β2) fnfn+1

+ 2pq (1-β1) fnfn−1 + 2pqβ1f2n + 2pqβ2 (1-β1) fn+1fn+2 + 2pqβ1β2f2n+4

= p2h1+2β2,3β2

2n + p2(β1 − 1)h1+2β2,β2

2n+1 + q2h1+2β2,3β2

2n+2 + q2(β1 − 1)h1+2β2,β2

2n+3

− 2p (β1 − 1) (pβ2 + p + q) fn−1fn − 2q2(β1 − 1) (1+β2) fnfn+1

+ h2pqβ1,2pqβ1β2

2n+1 + 2pqβ1β2(f2n + f2n+3) + 2pqβ2 (1 − β1) fn+1fn+2.

From the above, we proved

Theorem 2.5. The norm of the nth generalized Fibonacci quaternion Hp,q
n in

a generalized quaternion algebra is

n (Hp,q
n ) = p2h1+2β2,3β2

2n + p2(β1 − 1)h1+2β2,β2

2n+1 + q2h1+2β2,3β2

2n+2

+ q2(β1 − 1)h1+2β2,β2

2n+3 − 2p (β1 − 1) (pβ2 + p + q) fn−1fn

− 2q2(β1 − 1) (1+β2) fnfn+1 + h2pqβ1,2pqβ1β2

2n+1

+ 2pqβ1β2(f2n + f2n+3) + 2pqβ2 (1 − β1) fn+1fn+2. (2.8)

It is known that the expression for the nth term of a Fibonacci element
is

fn =
1√
5
[αn − βn] =

αn

√
5
[1 − βn

αn
], (2.9)

where α = 1+
√
5

2 and β = 1−√5
2 .

From the above, we can compute the following,

lim
n→∞n (Fn) = lim

n→∞(f2
n + β1f

2
n+1 + β2f

2
n+2 + β1β2f

2
n+3)

= lim
n→∞(

α2n

5
+β1

α2n+2

5
+β2

α2n+4

5
+β1β2

α2n+6

5
)

n→∞
= sgnE(β1, β2) · ∞

where

E(β1, β2) = (
1
5

+
β1

5
α2 +

β2

5
α4 +

β1β2

5
α6)

=
1
5

(1 + β1 (α + 1) + β2 (3α + 2) + β1β2 (8α + 5))

=
1
5
[1 + β1 + 2β2 + 5β1β2 + α (β1 + 3β2 + 8β1β2)],

Author's personal copy



682 C. Flaut and V. Shpakivskyi Adv. Appl. Cliff ord Algebras

since α2 = α + 1.
If E(β1, β2) > 0, there exist a number n1 ∈ N such that for all

n ≥ n1 we have

h1+2β2,3β2

2n+2 + (β1 − 1)h1+2β2,β2

2n+3 − 2(β1 − 1) (1 + β2) fnfn+1 > 0.

In the same way, if E(β1, β2) < 0, there exist a number n2 ∈ N such that for
all n ≥ n2 we have

h1+2β2,3β2

2n+2 + (β1 − 1)h1+2β2,β2

2n+3 − 2(β1 − 1) (1 + β2) fnfn+1 < 0.

Therefore for all β1, β2 ∈ R with E(β1, β2) �= 0, in the algebra H (β1, β2)
there is a natural number n0 = max{n1, n2} such that n (Fn) �= 0, hence Fn

is an invertible element for all n ≥ n0. Using the same arguments, we can
compute

lim
n→∞ (n (Hp,q

n )) = lim
n→∞

(
h2
n + β1h

2
n+1 + β2h

2
n+2 + β1β2h

2
n+3

)
= lim

n→∞[(pfn−1 + qfn)2 + β1 (pfn + qfn+1)
2 + β2 (pfn+1 + qfn+2)

2

+ β1β2 (pfn+2 + qfn+3)
2]

= sgnE′(β1, β2) · ∞
where

E′(β1, β2)

=
1
5
[(p + αq)2 + β1

(
pα + α2q

)2
+ β2

(
pα2 + α3q

)2
+ β1β2

(
pα3 + α4q

)2
]

=
1
5

(p + αq)2 [1 + β1α
2 + β2α

4 + β1β2α
6]

=
1
5

(p + αq)2 E(β1, β2).

Therefore for all β1, β2 ∈ R with E′(β1, β2) �= 0 in the algebra H (β1, β2)
there exist a natural number n′0 such that n (Hp,q

n ) �= 0, hence Hp,q
n is an

invertible element for all n ≥ n′0.
Now, we proved

Theorem 2.6. For all β1, β2 ∈ R with E′(β1, β2) �= 0, there exists a natural
number n′ such that for all n ≥ n′ Fibonacci elements Fn and generalized
Fibonacci elements Hp,q

n are invertible elements in the algebra H (β1, β2) .

Remark 2.7. Algebra H (β1, β2) is not always a division algebra, and some-
times can be difficult to find an example of invertible element. Above The-
orem provides us infinite sets of invertible elements in this algebra, namely
Fibonacci elements and generalized Fibonacci elements.

3. Fibonacci-Narayana Quaternions

In this section, we will study some properties of Fibonacci-Narayana elements
in the algebra H (β1, β2).
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Theorem 3.1. For the Fibonacci-Narayana quaternion Un, we have

a)
n∑

m=0

Um = Un+3 − U2,

b)
n∑

m=0

U3m = U3n+1 − 1 − e4.

Proof. a)

n∑
m=0

Um =
n∑

m=0

um + e2

n+1∑
m=1

um + e3

n+2∑
m=2

um + e4

n+3∑
m=3

um =: (∗).

Since u0 = 0, we consider that the term
n∑

m=0
um is equal with

n∑
m=1

um. We

can use property 1) from the introduction and we obtain

(∗) = un+3 − 1 + e2(un+4 − 1) + e3(un+5 − 2) + e4(un+6 − 3)

= Un+3 − (1 + e2 + 2e3 + 3e4) = Un+3 − U2.

b) Since u0 = 0, the term
n∑

m=0
u3m is equal with

n∑
m=1

u3m, therefore

n∑
m=0

U3m =
n∑

m=0

u3m + e2

n∑
m=0

u3m+1 + e3

n∑
m=0

u3m+2 + e4

n∑
m=0

u3m+3 =: (∗∗);

using properties 4), 2), 3), and again 4), we have

(∗∗) = u3n+1−1+u3n+2e2+u3n+3e3+(u3n+4−1)e4 = U3n+1−1−e4. �

Let {un} be a Fibonacci-Narayana sequence, and let Un = un · 1 +
un+1e2 + un+2e3 + un+3e4 be the nth Fibonacci-Narayana quaternion.

The function f(x) = a0 + a1x + a2x
2 + . . . + anx

n + . . . is called the
generating function for the sequence {a0, a1, a2, . . .}. In [5], the author found
a generating function for Fibonacci quaternions. In the following theorem,
we established the generating function for Fibonacci-Narayana quaternions.

Theorem 3.2. The generating function for the Fibonacci-Narayana quater-
nion Un is

G(t)=
U0+(U1-U0)t+(U2-U1)t2

1 − t− t3
=
e1+e2+e3+(1+e3)t + (e2+e3)t2

1 − t− t3
. (3.1)

Proof. Assuming that the generating function of the quaternion Fibonacci-

Narayana sequence {Un} has the form G(t) =
∞∑

n=0
Un t

n, we obtain that
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∞∑
n=0

Unt
n − t

∞∑
n=0

Unt
n − t3

∞∑
n=0

Unt
n

= U0 + U1t + U2t
2 + U3t

3 + . . .− U0t− U1t
2 − U2t

3 − U3t
4 − . . .

− U0t
3 − U1t

4 − U2t
5 − U3t

6 − . . .

= U0 + (U1 − U0)t + (U2 − U1)t2,

since Un = Un−1 + Un−3, n ≥ 3 and the coefficients of tn for n ≥ 3 are equal
with zero.

It results

U0+(U1 − U0)t+(U2 − U1)t2=
∞∑

n=0

Unt
n (1 − t− t3),

or in equivalent form

U0+(U1 − U0)t+(U2 − U1)t2

1 − t− t3
=

∞∑
n=0

Unt
n.

The theorem is proved. �

Theorem 3.3 (Binet-Cauchy formula for Fibonacci-Narayana numbers). Let
un = un−1 + un−3, n ≥ 3 be the nth Fibonacci-Narayana number, then

un=
1

(α-β) (β-γ) (γ-α)
[
αn+1 (γ-β)+βn+1 (α-γ)+γn+1 (β-α)

]
, (3.2)

where α, β, γ are the solutions of the equation t3 − t2 − 1 = 0.

Proof. Supposing that un = Aαn + Bβn + Cγn, A,B,C ∈ C and using the
recurrence formula for the Fibonacci-Narayana numbers, un = un−1 + un−3,
it results that α, β, γ are the solutions of the equation t3 − t2 − 1 = 0. Since
u0 = 0, u1 = 1, u2 = 1, we obtain the following system:⎧⎨

⎩
A + B + C = 0,

Aα + Bβ + Cγ = 1,
Aα2 + Bβ2 + Cγ2 = 1.

(3.3)

The determinant of this system is a Vandermonde determinant and can be
computed easily. It is Δ = (α-β) (β-γ) (γ-α) �= 0.

Using Cramer’s rule, the solutions of the system (3.3) are

A =
α (γ − β)

(α− β) (β − γ) (γ − α)
=

α

(β − α) (γ − α)
,

B =
β (α− γ)

(α− β) (β − γ) (γ − α)
=

β

(α− β) (γ − β)
,

C =
γ (β − α)

(α− β) (β − γ) (γ − α)
=

γ

(β − γ) (α− γ)
,

therefore relation (3.2) is true. �
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Theorem 3.4 (Binet-Cauchy formula for the Fibonacci-Narayana quater-
nions). Let Un = un · 1 + un+1e2 + un+2e3 + un+3e4 be the nth Fibonacci-
Narayana quaternion, then

Un=D
αn+1

(β-α) (γ-α)
+E

βn+1

(α-β) (γ-β)
+F

γn+1

(β-γ) (α-γ)
, (3.4)

where α, β, γ are the solutions of the equation t3 − t2 − 1 = 0 and

D = 1 + αe1 + α2e2 + α3e3,

E = 1 + βe1 + β2e2 + β3e3,

F = 1 + γe1 + γ2e2 + γ3e3.

Proof. Using relation (3.2), we have that

Un = un · 1 + un+1e2 + un+2e3 + un+3e4

=
1

(α-β) (β-γ) (γ-α)
[
(
αn+1 (γ-β) +βn+1 (α-γ) +γn+1 (β-α)

) · 1
+
(
αn+2 (γ − β) + βn+2 (α− γ) + γn+2 (β − α)

)
e1

+
(
αn+3 (γ − β) + βn+3 (α− γ) + γn+3 (β − α)

)
e2

+
(
αn+4 (γ − β) + βn+4 (α− γ) + γn+4 (β − α)

)
e3]

=
1

(α− β) (β − γ) (γ − α)
[αn+1 (γ-β)

(
1+αe1+α2e2+α3e3

)

+ βn+1 (α-γ)
(
1 + βe1 + β2e2 + β3e3

)
+ γn+1 (β-α)

(
1 + γe1 + γ2e2 + γ3e3

)
]. �

For negative n, the nth Fibonacci-Narayana number is defined as in the
following: un = un+3 − un+2, u0 = 0, u1 = 1, u2 = 1. In the same way is
defined the Fibonacci-Narayana quaternion Un for negative n.

Theorem 3.5. Let Un = un ·1+un+1e2+un+2e3+un+3e4 be the nth Fibonacci-
Narayana quaternion, therefore the following relations are true:

1)
n∑

i=0

�inU2n−2i−1 = U3n−1.

2)
n∑

i=0

�inU3n−2i−1 = U4n−1.

Proof. 1) Using Newton’s formula, it results that
(
t2 + 1

)n
= �0n

(
t2
)n

+ �1n
(
t2
)n−1

+ �2n
(
t2
)n−2

+ . . . + �nn
= �0nt2n + �1nt2n−2 + �2nt2n−4 + . . . + �nn.
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From here, we have that
n∑

i=0

�inU2n−2i−1

= �0nU2n−1 + �1nU2n−3 + �2nU2n−5 + . . . + �nnU−1

= �0n
(
D

α2n

(β − α) (γ−α)
+ E

β2n

(α−β) (γ−β)
+ F

γ2n

(β−γ) (α−γ)

)

+ �1n
(
D

α2n−2

(β−α) (γ−α)
+ E

β2n−2

(α−β) (γ−β)
+ F

γ2n−2

(β−γ) (α−γ)

)
+ . . .

+ �nn
(
D

1
(β−α) (γ−α)

+ E
1

(α−β) (γ−β)
+ F

1
(β−γ) (α−γ)

)

= D
1

(β−α) (γ−α)
(�0nα2n + �1nα2n−2 + . . . + �nn1)

+ E
1

(α−β) (γ−β)
(�0nβ2n + �1nβ2n−2 + . . . + �nn1)

+ F
1

(β−γ) (α−γ)
(�0nγ2n + �1nγ2n−2 + . . . �nn1)

= D
1

(β−α) (γ−α)
(
α2+1

)n
+ E

1
(α−β) (γ−β)

(
β2 + 1

)n

+ F
1

(β−γ) (α− γ)
(
γ2+1

)n

= D
1

(β−α) (γ−α)
α3n + E

1
(α−β) (γ−β)

β3n + F
1

(β−γ) (α−γ)
γ3n = U3n−1.

We used that α3 = α2 + 1, β3 = β2 + 1, γ3 = γ2 + 1.

2) Since t3 = t2 + 1, starting from relation
(
t3 + t

)n = t4n, for
t ∈ {α, β, γ}, by straightforward calculations as in 2), we obtain the asked
relation. �

Conclusions

In this paper we investigated some new properties of generalized Fibonacci
quaternions and Fibonacci-Narayana quaternions. Since Fibonacci-Narayana
quaternions was not intensive studied until now, we expect to find in the
future more and surprising new properties. We studied these elements for the
beauty of the relations obtained, but the main reason is that the elements of
this type, namely Fibonacci X elements, where X ∈ {quaternions, general-
ized quaternions}, can provide us many important information in the algebra
H (β1, β2) , as for example: sets of invertible elements in algebraic structures
without division.

Acknowledgements. Authors thank referee for his/her patience and sugges-
tions which help us to improve this paper.
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